Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chem Biol Interact ; 368: 110231, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2250366

ABSTRACT

The human microbiota is fundamental to correct immune system development and balance. Dysbiosis, or microbial content alteration in the gut and respiratory tract, is associated with immune system dysfunction and lung disease development. The microbiota's influence on human health and disease is exerted through the abundance of metabolites produced by resident microorganisms, where short-chain fatty acids (SCFAs) represent the fundamental class. SCFAs are mainly produced by the gut microbiota through anaerobic fermentation of dietary fibers, and are known to influence the homeostasis, susceptibility to and outcome of many lung diseases. This article explores the microbial species found in healthy human gastrointestinal and respiratory tracts. We investigate factors contributing to dysbiosis in lung illness, and the gut-lung axis and its association with lung diseases, with a particular focus on the functions and mechanistic roles of SCFAs in these processes. The key focus of this review is a discussion of the main metabolites of the intestinal microbiota that contribute to host-pathogen interactions: SCFAs, which are formed by anaerobic fermentation. These metabolites include propionate, acetate, and butyrate, and are crucial for the preservation of immune homeostasis. Evidence suggests that SCFAs prevent infections by directly affecting host immune signaling. This review covers the various and intricate ways through which SCFAs affect the immune system's response to infections, with a focus on pulmonary diseases including chronic obstructive pulmonary diseases, asthma, lung cystic fibrosis, and tuberculosis. The findings reviewed suggest that the immunological state of the lung may be indirectly influenced by elements produced by the gut microbiota. SCFAs represent valuable potential therapeutic candidates in this context.


Subject(s)
Asthma , Gastrointestinal Microbiome , Humans , Dysbiosis/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/therapeutic use , Lung/metabolism , Asthma/drug therapy
2.
Int J Rheum Dis ; 2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2238811

ABSTRACT

COVID-19 remains a life-threatening infectious disease worldwide. Several bio-active agents have been tested and evaluated in an effort to contain this disease. Unfortunately, none of the therapies have been successful, owing to their safety concerns and the presence of various adverse effects. Various countries have developed vaccines as a preventive measure; however, they have not been widely accepted as effective strategies. The virus has proven to be exceedingly contagious and lethal, so finding an effective treatment strategy has been a top priority in medical research. The significance of vitamin D in influencing many components of the innate and adaptive immune systems is examined in this study. This review aims to summarize the research on the use of vitamin D for COVID-19 treatment and prevention. Vitamin D supplementation has now become an efficient option to boost the immune response for all ages in preventing the spread of infection. Vitamin D is an immunomodulator that treats infected lung tissue by improving innate and adaptive immune responses and downregulating the inflammatory cascades. The preventive action exerted by vitamin D supplementation (at a specific dose) has been accepted by several observational research investigations and clinical trials on the avoidance of viral and acute respiratory dysfunctions. To assess the existing consensus about vitamin D supplementation as a strategy to treat and prevent the development and progression of COVID-19 disease, this review intends to synthesize the evidence around vitamin D in relation to COVID-19 infection.

3.
Nat Commun ; 13(1): 7635, 2022 Dec 10.
Article in English | MEDLINE | ID: covidwho-2160209

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and infective exacerbations, however, in-vitro model systems for the study of host-pathogen interaction at the individual level are lacking. Here, we describe the establishment of nasopharyngeal and bronchial organoids from healthy individuals and COPD that recapitulate disease at the individual level. In contrast to healthy organoids, goblet cell hyperplasia and reduced ciliary beat frequency were observed in COPD organoids, hallmark features of the disease. Single-cell transcriptomics uncovered evidence for altered cellular differentiation trajectories in COPD organoids. SARS-CoV-2 infection of COPD organoids revealed more productive replication in bronchi, the key site of infection in severe COVID-19. Viral and bacterial exposure of organoids induced greater pro-inflammatory responses in COPD organoids. In summary, we present an organoid model that recapitulates the in vivo physiological lung microenvironment at the individual level and is amenable to the study of host-pathogen interaction and emerging infectious disease.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , SARS-CoV-2 , Organoids , Bronchi , Host-Pathogen Interactions
4.
Adv Physiol Educ ; 46(2): 297-308, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1816798

ABSTRACT

The COVID-19 pandemic has been a strong driver for moving more teaching and learning activities online. Border restrictions have had a severe impact on international students either hoping to enroll in courses offered in Australia or continue with such courses if they are already enrolled. The online learning experience is likely different between students onshore and offshore. This study took a unique opportunity to investigate any such differences in students' attitudes toward remote learning, necessitated by the pandemic, by comparing two cohorts of students, Australia versus China based. An anonymous survey using the Likert Scale and open-ended questions was available for student feedback on subject delivery. The students based in Australia expressed a preference for remote learning due to the convenience of attendance and availability of the video recordings. However, students in China had a strong preference for face-to-face sessions, with the lack of prior experience in an English-speaking learning environment and hesitance to speak with the lecturers and engage in the learning activities possible reasons for this. In quizzes, students in Australia performed better than those in China regardless of local or international student status. This difference may be due to the Australian-based students' prior experience of English-speaking environments and open-book quizzes. In conclusion, remote learning in a familiar language and learning environment is accepted by students, whereas if the teaching is delivered in a second language using unfamiliar teaching methods, remote learning will require additional scaffolding to enhance their learning experience.


Subject(s)
COVID-19 , Pandemics , Attitude , Australia/epidemiology , Humans , Language , SARS-CoV-2 , Students
6.
Life Sci ; 280: 119744, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1281492

ABSTRACT

Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.


Subject(s)
Nanoparticles/chemistry , Polymers/chemistry , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Vaccination , Viral Vaccines/administration & dosage , Animals , COVID-19/prevention & control , COVID-19/virology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Drug Carriers/chemistry , Humans , Influenza, Human/prevention & control , Influenza, Human/virology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Vaccination/methods , Viral Vaccines/therapeutic use
7.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L416-L421, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-665903

ABSTRACT

Epidemiological studies suggest that environmental factors (e.g., air pollution) can influence the spread and infectivity of coronavirus disease 2019 (COVID-19); however, very few papers have investigated or discussed the mechanism behind the phenomenon. Given the fact that pollution will increase as social distancing rules are relaxed, we summarized the current understanding of how air pollution may affect COVID-19 transmission and discussed several possible mechanisms. Air pollution exposure can dysregulate the human immune response and make people more susceptible to infections, and affect infectivity. For example, in response to exposure to air pollution, angiotensin-converting enzyme 2 will increase, which is the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This may increase the efficiency of viral infection. It is also possible that air pollution can facilitate SARS-CoV-2 spread by increasing the transmission, and potentially, SARS-CoV-2 can also survive longer when attached to a pollutant.


Subject(s)
Air Pollution , Betacoronavirus/pathogenicity , Coronavirus Infections/etiology , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/etiology , Pneumonia, Viral/virology , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus/pathogenicity , Disease Transmission, Infectious/prevention & control , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL